
Layer-Wise Training to Create Efficient
Convolutional Neural Networks

Linghua Zeng and Xinmei Tian(&)

CAS Key Laboratory of Technology in Geo-spatial Information Processing
and Application System, University of Science and Technology of China,

Hefei 230027, Anhui, China
zenglh@mail.ustc.edu.cn, xinmei@ustc.edu.cn

Abstract. Recent large CNNs have delivered impressive performance but their
storage requirement and computational cost limit a wide range of their applica-
tions in mobile devices and large-scale Internet industry. Works focusing on
storage compression have led a great success. Recently how to reduce compu-
tational cost draws more attention. In this paper, we propose an algorithm to
reduce computational cost, which is often solved by sparsification and matrix
decompositionmethods. Since the computation is dominated by the convolutional
operations, we focus on the compression of convolutional layers. Unlike sparsi-
fication and matrix decomposition methods which usually derive from mathe-
matics, we receive inspiration from transfer learning and biological neural
networks. We transfer the knowledge in state-of-the-art large networks to com-
pressed small ones, via layer-wise training.We replace the complex convolutional
layers in large networks with more efficient modules and keep their outputs in
each-layer consistent. Modules in the compressed small networks are more effi-
cient, and their design draws on biological neural networks. For AlexNet model,
we achieve 3.62� speedup, with 0.11% top-5 error rate increase. For VGG
model, we achieve 5.67� speedup, with 0.43% top-5 error rate increase.

Keywords: Deep learning � Network compression � Layer-wise training

1 Introduction

Large CNNs have recently demonstrated state-of-the-art performance in image classi-
fication task, which is treated as an important benchmark for computer vision [10].
A well-known competition, Large Scale Visual Recognition Challenge (ILSVRC) [10],
and its database have given birth to lots of famous CNNs. These networks (e.g. AlexNet
[1] and VGG [2]) are powerful and possess great representation capability. Usually very
similar models are used in the training stage and the deployment stage despite their
enormously different requirements. In the training stage, most state-of-the-art CNNs
focus on decreasing classification error rate. Thus, CNNs are usually designed to have
parameters as many as possible if they could achieve lower error rate. Consequently, a
huge number of redundant parameters will be generated in this stage [4]. In deployment
stage, apart from the error rate, there are strict requirements on storage and computa-
tional cost [6]. Improving the efficiency of CNNs is of critical importance.

© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 631–641, 2017.
https://doi.org/10.1007/978-3-319-70096-0_65



To address these issues, there is growing concern about network compression in
recent years. It can be roughly divided into storage compression and computation
compression. The study of storage compression has been considerably thorough [6]. As
a representative work, a three stage pipeline was introduced by Han et al. [6]. Pruning,
trained quantization and Huffman coding worked together to reduce the storage
requirement by 35� to 49� without increasing the error rate. However, storage
compression methods are not remarkably efficient for computation compression.
Sparsification and matrix decomposition are fundamental approaches in computation
compression. Denton et al. [3] exploited the linear structure of the parameters and
found appropriate low-rank approximation of the parameters in different layers. Zhang
et al. [5] enabled an asymmetric reconstruction that reduced the rapidly accumulated
error when multiple layers were compressed, achieving 5� FLOPs reduction with
1.0% top-5 error rate increase (5� /+1.0) on VGG model. Figurnov et al. [7] sped up
the bottleneck convolutional layers by skipping their evaluation in some of the spatial
positions, achieving 2� /+2.0 on AlexNet and 1.9� /+2.5 on VGG. Kim et al. [8] used
Tucker Decomposition on each layer with the rank determined by a global analytic
solution of VBMF, achieving 2.67� /+1.70 on AlexNet and 4.93� /+0.50 on VGG.

These computation compression methods mainly focus on decomposition algo-
rithms [5, 8] or position choosing algorithm [7] deriving from mathematics. Different
from them, we focus on training algorithm inspired by transfer learning. We study how
to transfer knowledge in state-of-the-art (big model) networks to compressed networks
(small model). Since the computation is dominated by the convolutional operations [3],
we focus on the compression of convolutional layers. Firstly we train a big model with
redundant parameters to reach the highest possible performance. After that, we propose
“layer-wise training”, to compress the redundant parameters in the big model and
transfer its useful information into the small model. An earlier work proposed by
Hinton et al. [4] utilized the last layer output of the big model to train a small model.
However, not all of the big model knowledge is included in the last-layer output.
Feature maps, generated by convolutional layers, including knowledge about how the
network identifies objects, are helpful to teach the small model. For example, when we
teach a baby to identify a car, we will not only tell him that this is a car but also tell him
that a car has four wheels, the anterior window and others. In our layer-wise training
algorithm, we teach the small model not only what the image is but also how to identify
the image. Efficient modules in the small model are designed to replace conventional
convolutional layers in the big model. We keep the each-layer outputs of the small
model and the big model to be consistent. The design of modules draws on biological
neural networks, and they also can be explained from the perspective of matrix
decomposition.

This paper has the following major contributions:

(1) We propose the layer-wise network training to compress a big model into a small
model to reduce computational cost.

(2) We design a set of novel and efficient modules inspired by biological neural
networks for layer-wise training and it is the first trying on network compression.
Besides they can also be explained from the perspective of matrix decomposition.

632 L. Zeng and X. Tian



(3) We evaluate our methods on large datasets, achieving 3.62� FLOPs reduction
with 0.11% top-5 error rate increase on AlexNet model, and 5.67� FLOPs
reduction with 0.43% top-5 error rate increase on VGG model.

2 Layer-Wise Training to Create Efficient CNNs

2.1 Overall Framework

In this section, we introduce the scheme of our layer-wise training method. Our scheme
consists of three steps: the big model training, layer-wise training for compression, and
the small model fine-tuning. Here we use AlexNet [1] as an example, as illustrated
in Fig. 1.

In the first step, we train a big redundant model (e.g. AlexNet [1], VGG [2]) to
achieve the highest possible performance. In the second step, we train modules in the
small model to replace convolutional layers in the big model. We keep the each-layer
outputs of them to be consistent. We choose Euclidean-Loss function,

E ¼ 1
2

x� mk k22: ð1Þ

where x andm are the outputs of convolutional layers in the big model and modules in the
small model respectively. In this step, as shown in Fig. 1, only white and grey lines work,
and the black lines are cut off. The training unit is a block, marked with a red frame.
Each block consists of a convolutional layer and a module. In fact, we train modules in
each block independently, which means no back propagation between blocks.

Fig. 1. The scheme of training algorithm. The upper flow in this chart, from conv1 to conv5,
represents convolutional layers in the big model. The lower flow, from module1 to module5,
represents modules in the small model. The rest part, fc6, fc7, and fc8, represent fully connected
layers shared by both big model and small model. Data means input image or we can say training
data. Euclidean Loss means the Euclidean Loss layer which computes loss and generate
gradients. The red frames are blocks. Since we focus on convolutional layers, ReLU, Pooling and
LRN [1] are omitted and represented in a box. (Color figure online)

Layer-Wise Training to Create Efficient Convolutional Neural Networks 633



In the third step, we fine-tune the small model using cross-entropy loss. Since we
use softmax function after the last layer output, we combine it with loss function,

E ¼ �log
efl

Pc
j¼1 e

fj
¼ log

Xc

j¼1
efj � fl; ð2Þ

where f is the output of last fully connected layer in the small model, c is the channel
(dimension) of this output, l is the label index of the training image, and fl is the scalar
of f on label index. Image is filled with noise obstructing the classification, and it is
learned by parameters. The experiment on AlexNet shows the existence of noise along
parameters after layer-wise training. So we fine-tune the whole network after layer-wise
training. In this step, only grey and black lines in Fig. 1 work, and the white lines are
cut off. The fully connected layers in the small model are copied from the big model,
and they share the same parameters.

2.2 Matrix Decomposition

In this section, we introduce matrix decomposition theory in our work. Formally, each
convolutional layer takes a stack of feature maps as input, a 3-D tensor denoted as
Z 2 R

c�h�w, where h and w are the height and width of feature maps respectively, and c
is the number of feature maps also called channel. The parameters of convolutional
layers, also called kernels, are denoted as W 2 R

n�c�d�d , where n is the number of
output feature maps, c is the number of input feature maps also called input channels,
and d � d is the spatial kernel size. The output of a convolutional layer, A 2 R

n�h0�w0
is,

Au;i; j ¼
Pc

v¼1

Pd
m¼1

Pd
n¼1 Zv; i�1ð Þsþm�p; j�1ð Þsþ n�pWu;v;m;n

i:e: A ¼ Z �W ;
ð3Þ

where p and s are padding size and convolutional stride respectively, and � represents
spatial convolution. If we decompose W into two matrices, denoted as P 2 R

c�k and
Q 2 R

n�k�d�d,

Wu;v;m;n ¼
Xk

l¼1
Pv;lQu;l;m;n: ð4Þ

Au;i; j ¼
Pc

v¼1

Pd
m¼1

Pd
n¼1 Zv; i�1ð Þsþm�p; j�1ð Þsþ n�p

Pk
l¼1 Pv;lQu;l;m;n

¼ Pk
l¼1

Pd
m¼1

Pd
n¼1 ð

Pc
v¼1 Zv; i�1ð Þsþm�p; j�1ð Þsþ n�pPv;lÞQu;l;m;n

i:e: A ¼ Z � P� Q:
ð5Þ

This formula means that the origin convolutional layer can be decomposed into two
sequentially connected convolutional layers: one layer with 1� 1 kernels and the other
with d � d kernels. Besides, if we exchange the orders of P and Q, we have

Wu;v;m;n ¼
Xk

l¼1
Qv;l;m;nPl;u: ð6Þ

634 L. Zeng and X. Tian



In this way, we can obtain a variant of sequentially-connected convolutional layers,
which are one layer with d � d kernels and the other with 1� 1 kernels.

2.3 Modules Inspired by Biological Neural Networks

In this section we introduce the principles behind our module design method. The
Ventral Stream, going through V1, V2, V4 and the inferior temporal lobe area, is
involved in object identification and recognition [9]. We design three kinds of modules,
called MODULE-A, MODULE-B, and MODULE-C, shown in Fig. 2. Following the
inspiration from Ventral Stream, MODULE-A corresponds to V1 and V2. MODULE-B
and MODULE-C correspond to V4 and the inferior temporal lobe area respectively.

MODULE-A usually takes the role of the first layer in the small model. Similarly V1
and V2 are in the front of visual cortex. Color and shape are treated in different areas in
V1 and V2 [9]. As shown in Fig. 2, MODULE-A has two paths which learn shape and
color respectively: one path consists of conv1 and conv2, and the other consists of
average pooling and conv3. The number of output feature map of conv1 is 1, which
means conv1 translates the input color image into a colorless image. Therefore conv2
can only learn the shape. Average pooling is used to decrease the size of input, because
we find the color path requires lower resolution. Conv3 receives all color channels,
reflecting the color path. The output of MODULE-A is a linear combination of conv2
and conv3 via projection (convolution with 1 � 1 kernels). The structure of
MODULE-A can also be explained from the perspective of matrix decomposition

Fig. 2. Three kinds of modules used in our model. A concatenate layer (Concat) concatenates
two or more outputs of convolutional layers along the channel axis.

Layer-Wise Training to Create Efficient Convolutional Neural Networks 635



introduced in Sect. 2.2. Firstly we decompose the original convolutional layer into
conv’ and projection. Then conv’ can be divided into two parts along channel axis, noted
as conv2’ and conv3’. Then we decompose conv2’ into conv1 and conv2. And we
decrease kernel size of conv3’ to obtain conv3. To keep the receptive fields of two paths
consistent, we add an average pooling layer before conv3.

Our MODULE-B, similar with V4, replaces the middle convolutional layers in the
big model. V4 has a significant function in visual attention [13]. Inspired by this,
MODULE-B focuses on the important part of feature maps and filters the jamming
information. MODULE-B has three paths representing different scales of attention. The
kernel sizes in conv3, conv4 and conv5 are 5 � 5, 3 � 3, and 1 � 1 respectively.
Finally we combine different scales of attentions together via projection. There is also
another explanation for MODULE-B from matrix decomposition scheme in Sect. 2.2.
Firstly we decompose the original convolutional layer into conv’ and projection. Then
conv’ can be divided into three parts along channel axis, noted as conv1’, conv3’, and
conv5. We decompose conv1’ into conv1 and conv2. Similarly we decompose conv3’
into conv3 and conv4. Finally we decrease the kernel sizes of conv4 and conv5.

In deeper layers, we adopt MODULE-C. The inferior temporal lobe is capable of
remembering particular objects [12]. MODULE-C is very simple, consisting of conv1
and conv2, with 1 � 1 and 5 � 5 kernels respectively. Conv2 works as a memory unit,
storing the information of object. Conv1 fuses feature maps to match the memory.
Conv1 and conv2 in MODULE-C also can be considered as decomposition of a
convolutional layer. If we exchange the position of conv1 and conv2, we obtain a
variant of MODULE-C. Here conv2 is still a memory unit, but conv1 copes with
memory information to form more complicated object.

3 Experiment

To validate our algorithm, we reduce computational complexity of state-of-the-art
CNNs without much error rate increase. Following [5, 7, 8], we measure the compu-
tational complexity as the number of floating point multiply accumulate operations
(FLOPs) in the forward propagation through convolutional layers. In our method,
conventional convolutional layers in large CNNs are replaced with our proposed
modules that need much fewer FLOPs. All CNNs are implemented using Caffe [11].
The layer-wise training adopts batch gradient descent method.

3.1 MNIST

MNIST is a large database of handwritten digits. We introduce lenet-conv, a model in
Caffe [11], consisting of two convolutional layers and two fully connected layers. The
validation error rate of lenet-conv is 1.03%. We use a variant of MODULE-C to replace
convolutional layers in lenet-conv and the new model is denoted as lenet-conv-dec, as
shown in Table 1.

636 L. Zeng and X. Tian



We compare our layer-wise training algorithm with Distilling [4] and label training,
to prove that our algorithm enables faster convergence rate. We didn’t compare with
other methods [5, 7, 8], because they were designed for large networks and results on
this small database were not reported. Label training is the original training algorithm
of lenet-conv. Distilling and label training run 15K iterations, and the lowest error rates
and corresponding iterations were recorded, shown in Table 2. Our algorithm run 500
iterations on layer-wise training and 5000 iterations on fine-tuning. In the compare of
error rates, they are all close to lenet-conv, but ours is a little lower. In the compare of
training iterations, our algorithm has an advantage.

3.2 ILSVRC

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [10] evaluates
algorithms for image classification at large scale. We adopt two famous CNN models,
AlexNet [1] (CaffeNet [11] as a variant) and VGG-16 [2], as our baselines. The
AlexNet and VGG-16 are directly downloaded from Caffe’s [11] model zoo. In the
following experiment, we adopt the increase of top-5 error rate and reduction of FLOPs
as benchmarks to compare different algorithms. In this section, we prove our algorithm
is better than previous algorithms [5, 7, 8] in both the error rate and compression rate.
All cited results come from their papers. We didn’t compare Distilling method [4]
because the results on this large database were not reported and we achieve poor results
with this method.

AlexNet Model
Structures of different models are detailed in Table 3. The increase of top-5 error rate
and reduction of FLOPs are given in Table 4. The alex-base model is the original
AleNet, with 19.78% top-5 error rate and 666M FLOPs.

Table 1. The structure of lenet-conv and lenet-conv-dec. Conv1, conv2, fc1, and fc2 are layer
names. (K � K, N) denotes a convolutional layer with N kernels of K � K size. Fc1 has 500
neurons and fc2 has 10.

model conv1 conv2 fc1 fc2

lenet-conv 5�5,20 5�5,50 500 10
lenet-conv-dec 5�5,4 1�1,20 5�5,10 1�1,50 500 10

Table 2. Error and training iterations of different algorithms. Our algorithm run 500 iterations
on layer-wise training and 5000 iterations on fine-tuning.

Algorithm Error Training iterations

Label training 1.07 12500
Distilling [4] 1.04 11500
Layer-wise training 0.99 500 + 5000

Layer-Wise Training to Create Efficient Convolutional Neural Networks 637



alexnet-dec-base
This model is used to show that layer-wise training can reproduce convolutional layers
in alexnet-base from scratch. The structure of alexnet-dec-base is the same with
alexnet-base and convolutional layers in alexnet-dec-base work as modules. We use the
convolutional layer in alexnet-dec-base to learn the one in alexnet-base. We did not
fine-tune the network after layer-wise training. The error rate of this model is close to
alexnet-base. We visualized the kernels of conv1 in two models, and discovered they
were almost the same except that kernels in alexnet-dec-base had more noise. Though
noise didn’t jeopardize this model, it become complicated when models have less
redundancy. So in the following experiments we fine-tune the model after layer-wise
training.

alexnet-dec-back and alexnet-dec-front
These two models are used to validate our decomposition scheme in Sect. 2.2. We
replace each convolutional layer in alexnet-base with a sequence of two convolutional
layers, consisting of d � d kernels and 1 � 1 kernels respectively, and the new model is
called alexnet-dec-back. The alexnet-dec-front is similar but its first layer is unchanged.
Our alexnet-dec-back model achieved 2.16� FLOPs reduction, with 0.04% increase in
the error rate. It proved that decomposition were capable of achieving an acceptable
compression rate with little increase in the error rate. Our alexnet-dec-front achieved

Table 3. The structures of five variants of AlexNet. The labels, from conv1 to conv5, represent
layer names of five convolutional layers. (K � K, N, %G, /S) represents a convolutional layer
with N kernels of K � K size, S strides and G groups. If a hyper-parameter is omitted, it is 1.
(avepool5�5, /2) means an average pooling layer with 5 � 5 kernel size and 2 strides.

Layer alexnet-base alexnet-dec-base alexnet-dec-back alexnet-dec-front alexnet-dec-mod

conv1 11�11,96,/4 11�11,96,/4 11�11,48,/4 11�11,96,/4 1�1,1 avepool5�5,/2

11�11,24,/4 5�5,40,/2

1�1,96 1�1,96

conv2 5�5,256,%2 5�5,256,%2 5�5,128,%2 1�1,48,%2 1�1,16 1�1,12 1�1,16

3�3,48 5�5,64

1�1,256,%2 5�5,256,%2 1�1,256

conv3 3�3,384 3�3,384 3�3,192 1�1,128 1�1,128

1�1,384 3�3,384 3�3,384,%2

conv4 3�3,384,%2 3�3,384,%2 3�3,192,%2 1�1,192,%2 1�1,96

1�1,384,%2 3�3,384,%2 3�3,384,%2

conv5 3�3,256,%2 3�3,256,%2 3�3,128,%2 1�1,192,%2 1�1,128

1�1,256,%2 3�3,256,%2 3�3,256,%4

Table 4. Comparison of top-5 error rate increase and FLOPs reduction based on AlexNet.

Model alexnet-dec-
base

alexnet-dec-
back

alexnet-dec-
front

alexnet-dec-
mod

Kim’s [8] Figurnov’s [7]

error" +0.01 +0.04 −0.10 +0.11 +1.70 +2.0
FLOPs# 1�1 2.16� 1.65� 3.62� 2.67� 2.0�

638 L. Zeng and X. Tian



1.65� FLOPs reduction, lower than alexnet-dec-back but it achieved 0.10% decrease in
the error rate. It proved the existence of redundant parameters.

alexnet-dec-mod
Finally we used the modules in Sect. 2.3. The first convolutional layer is replace with
MODULE-A, the second layer is replaced with MODULE-B, and the following layers
are replaced with MODULE-C. We try to imitate the structure of Ventral Stream. We
achieve 3.62� FLOPs reduction, with 0.11% increase in the error rate (3.62� /+0.11).
Comparing to the methods of Kim (2.67� /+1.70) [8] and Figurnov (2� /+2.0) [7], our
method has enormous advantages for the error rate and compression rate.

VGG-16
VGG-16 has 15.35G FLOPs, with 10.10% top-5 error rate. Structures of vgg-base
(VGG-16) and our vgg-dec-mod model are shown in Table 5. The increase of top-5
error rate and reduction of FLOPs are given in Table 6.

Conv1_1 is unchanged. MODULE-B is used to replace conv1_2, conv2_1, con-
v2_2, conv3_1, and conv3_2. MODULE-C is used to replace the other convolutional
layers. Here MODULE-B is a little different from the prototype. The kernel size of
original convolutional layers is 3 � 3. So the convolutional layer with 5 � 5 kernel
size in MODULE-B and the layer in front of it are not necessary. Finally we achieve
5.67� FLOPs reduction, with 0.43% increase in top-5 error rate (5.67� /+0.43).
Comparing to the methods of Kim (4.93� /+0.50%) [8], Figurnov (1.9� /+2.5%) [7]
and Zhang (5� /+1.0%) [5], our method has advantages on both the error rate and
compression rate.

Table 5. The structure of vgg-16-base (original VGG-16) and vgg-dec-mod. The meaning of
each label is the same with Table 3.

Layer vgg-16-base vgg-dec-mod Layer vgg-16-base vgg-dec-mod

conv1_1 3�3,64 3�3,64 conv1_2 3�3,64 1�1,12 1�1,8
3�3,24
1�1,64

conv2_1 3�3,128 1�1,24 1�1,8 conv2_2 3�3,128 1�1,36 1�1,16
3�3,48,%2 3�3,48,%2
1�1,128 3�3,512,%2

conv3_1 3�3,256 1�1,36 1�1,16 conv3_2 3�3,256 1�1,48 1�1,32
3�3,96,%2 3�3,96,%2
1�1,256 1�1,256

conv3_3 3�3,256 1�1,96 conv4_1 3�3,512 1�1,96
3�3,256,%2 3�3,512,%2

conv4_2 3�3,512 1�1,144 conv4_3 3�3,512 1�1,128
3�3,512,%2 3�3,512,%2

conv5_1 3�3,512 1�1,256 conv5_2 3�3,512 1�1,256
3�3,512,%4 3�3,512,%4

conv5_3 3�3,512 1�1,256
3�3,512,%4

Layer-Wise Training to Create Efficient Convolutional Neural Networks 639



4 Conclusion

In this work, we propose a layer-wise training algorithm to create efficient convolu-
tional neural networks and achieve better results than previous works, validated by
better compression rate, lower error rate and faster convergence rate. Inspiration from
visual cortex of brain help us design efficient modules to replace conventional con-
volutional layers. Besides our method is extremely flexible. It is easy to adopt other
module design methods to achieve higher compression rate and lower error rate in the
future.

Acknowledgements. This work is supported by the 973 project 2015CB351803, NSFC
No. 61572451 and No. 61390514, Youth Innovation Promotion Association CAS
CX2100060016, and Fok Ying Tung Education Foundation WF2100060004.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1106–1114
(2012)

2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition (2014). arXiv preprint: arXiv:1409.1556

3. Denton, E., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within
convolutional networks for efficient evaluation. In: Advances in Neural Information
Processing Systems, pp. 1269–1277 (2014)

4. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015). arXiv
preprint: arXiv:1503.02531

5. Zhang, X., Zou, J., He, K., Sun, J.: Accelerating very deep convolutional networks for
classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 1943–1955
(2016)

6. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding (2015). arXiv preprint: arXiv:1510.00149

7. Figurnov, M., Ibraimova, A., Vetrov, D.P., Kohli, P.: PerforatedCNNs: acceleration through
elimination of redundant convolutions. In: Advances in Neural Information Processing
Systems, pp. 947–955 (2016)

8. Kim, Y.D., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of deep
convolutional neural networks for fast and low power mobile applications (2015). arXiv
preprint: arXiv:1511.06530

9. Nicholls, J.G., Martin, A.R., Wallace, B.G., Fuchs, P.A.: From Neuron to Brain. Sinauer
Associates, Sunderland (2001)

10. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., et al.: Imagenet large scale visual
recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

Table 6. Comparison of top-5 error rate increase and FLOPs reduction based on VGG-16.

Model vgg-16-dec-mod Kim’s [8] Figurnov’s [7] Zhang’s [5]

error" +0.43 +0.50 +2.5 +1.0
FLOPs# 5.67� 4.93� 1.9� 5�

640 L. Zeng and X. Tian

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1511.06530


11. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., et al.: Caffe: convolutional
architecture for fast feature embedding. In: Proceedings of the 22nd ACM International
Conference on Multimedia, pp. 675–678 (2014)

12. Chelazzi, L., Miller, E.K., Duncanf, J.: A neural basis for visual search in inferior temporal
lobe. Nature 363(6427), 345–347 (1993)

13. Roe, A.W., Chelazzi, L., Connor, C.E., Conway, B.R., Fujita, I., et al.: Toward a unified
theory of visual area V4. Neuron 74(1), 12–29 (2012)

Layer-Wise Training to Create Efficient Convolutional Neural Networks 641


	Layer-Wise Training to Create Efficient Convolutional Neural Networks
	Abstract
	1 Introduction
	2 Layer-Wise Training to Create Efficient CNNs
	2.1 Overall Framework
	2.2 Matrix Decomposition
	2.3 Modules Inspired by Biological Neural Networks

	3 Experiment
	3.1 MNIST
	3.2 ILSVRC

	4 Conclusion
	Acknowledgements
	References




